
IBM® Security Identity Manager Web
Services API

Table of Contents
1 Introduction...5
2 Architecture...6

2.1 Architecture overview...6
2.2 Architecture components..6

3 Web Services functionality...7
3.1 WSSessionService...7
3.2 WSAccountService...9
3.3 WSGroupService...9
3.4 WSOrganizationalContainerService...10
3.5 WSPasswordService...10
3.6 WSPersonService..11
3.7 WSProvisioningPolicyService..13
3.8 WSRoleService...13
3.9 WSServiceService...13
3.10 WSSystemUserService...14
3.11 WSSearchDataService..14
3.12 WSRequestService..15
3.13 WSToDoService...16
3.14 WSAccessService...16
3.15 WSUnauthService...16
3.16 WSExtensionService...17
3.17 WSSharedAccessService..21

4 Example code to use the IBM Security Identity Manager Web Services.......................28
4.1.1 Example: Authenticate to IBM Security Identity Manager and get a session
handle...29
4.1.2 Example: Login via challenge response questions for a user (lost password
behavior)...29
4.1.3 Example: Get principal person (get the person object of the logged in person)
..30
4.1.4 Example: Create person...30
4.1.5 Example: Modify person (including roles)..31
4.1.6 Example: Suspend person example...31
4.1.7 Example: Search person example..31
4.1.8 Example: Search persons with an IBM Security Identity Manager account...31
4.1.9 Example: Get authorized services for a person (services on which a person is
authorized to have a new account)...32
4.1.10 Example: Get principal person's roles...32
4.1.11 Example: Check if person is member of role..32
4.1.12 Example: Add role...32
4.1.13 Example: Remove role..32
4.1.14 Example: Synchronize passwords and synchronize generated password.....33
4.1.15 Example: Add roles to person...33
4.1.16 Example: Remove person from roles..33

4.1.17 Example: Transfer person..33
4.1.18 Example: Create account...33
4.1.19 Example: Deprovision account..34
4.1.20 Example: Get account attributes..34
4.1.21 Example: Get account profile for service..34
4.1.22 Example: Get default account attributes (helpful before provisioning a new
account)..34
4.1.23 Example: Modify account...34
4.1.24 Example: Restore account...34
4.1.25 Example: Suspend account..34

4.2 Role object related tasks..35
4.2.1 Example: Lookup a role by its DN..35
4.2.2 Example: Lookup a system role (ISIM Group)...35
4.2.3 Example: Search roles by filter...35
4.2.4 Example: Create static role..35
4.2.5 Example: Get member roles..35
4.2.6 Example: Update role hierarchy..35

4.3 Organizational Container object related tasks...36
4.3.1 Example: Get Organization sub-tree...36
4.3.2 Example: Search container by attribute...36
4.3.3 Example: Create container..36
4.3.4 Example: Remove container..36
4.3.5 Example: Lookup container..37
4.3.6 Example: Get Services..37
4.3.7 Example: Get Account for service..38
4.3.8 Example: Service search..38
4.3.9 Example: Get service for an account...38
4.3.10 Example: Create service..38
4.3.11 Example: Modify service..39

4.4 To Do task related...39
4.4.1 Example: Get Assignments...39
4.4.2 Example: Get RFI..39
4.4.3 Example: Get Entity detail..39
4.4.4 Example: Submit RFI..39
4.4.5 Example: Approve or Reject...40

4.5 Access Service related task...40
4.5.1 Example: Create an Access...40
4.5.2 Example: Get Accesses...40
4.5.3 Example: Remove a user Access...40
4.5.4 Example: search for available access entitlements..41

4.6 UnAuth related task...41
4.6.1 Example: Get challenge questions...41
4.6.2 Example: Lost password login reset password..41
4.6.3 Example: Self register...41
4.6.4 Example: Get self password change rules...41
4.6.5 Example: Extend with XML...41

5 SharedAccess related examples..43
6 Single Sign-On (SSO) implementation...44

6.1 WS-Security headers...45
6.2 IBM® Security® Access Manager (ISAM) WebSEAL HTTP headers.................46
6.3 IBM Security Identity Manager Web Services API best practices.........................47

6.3.1 Don’t use ‘GregorianCalendar.setTime(new Date())’ for scheduling
arguments ..47
6.3.2 LDAP Attribute filter..48
6.3.3 Specify return attributes..48

1 Introduction
The IBM® Security Identity Manager Web Services front end is an enablement
customization to provide a web services based channel to communicate with the IBM
Security Identity Manager. The IBM Security Identity Manager product comes with a
Java API that can be used from external applications to communicate with the IBM
Security Identity Manager. However, it requires a Java Authentication and
Authorization Service (JAAS) configuration, and version-specific JAR files from the IBM
Security Identity Manager application and the IBM® WebSphere Application Server.
The environment must be updated whenever the IBM Security Identity Manager or
the IBM WebSphere Application Server patches or upgrades are installed. The IBM
Security Identity Manager users often ask for an easier, lightweight and Java
independent way to communicate with the IBM Security Identity Manager.
The IBM Security Identity Manager Web Services wrapper provides an easy
lightweight communication channel to the IBM Security Identity Manager. The Web
Services client does not have the IBM Security Identity Manager or the IBM
WebSphere Application Server dependency. The Web Services API exposes user
functionality for customers to build custom applications. The Web Services API does
not expose administration functionality. Some of the advantages of using the web
services wrapper instead of the IBM Security Identity Manager API to communicate
with the IBM Security Identity Manager are:

• Footprint is small. Provides a standard web services interface using HTTP/S to
communicate with the IBM Security Identity Manager.

• IBM Security Identity Manager or the IBM WebSphere Application Server JAR
files in the external application are not needed. An IBM WebSphere Application
Server client is also not needed on the client side.

• No JAAS configuration needed to talk to the IBM Security Identity Manager.

• The IBM Security Identity Manager Web Services uses a simple data model. A
client can generate the model and client artifacts from the Web Services
Description Language (WSDL) without needing any special serializers or
deserializers.

• The IBM Security Identity Manager API is abstracted into a functional web
services API, so client application impact is minimized during the IBM Security
Identity Manager or the IBM WebSphere Application Server upgrades and
patches.

• Additionally exposes an API to get forms data from the IBM Security Identity
Manager so that a client can get data and rendering information. Form changes in
the IBM Security Identity Manager are reflected back in real time.

• Provides a threaded conversation capability by providing a session handle to a
client. Provides options for server or client state saving mechanisms, or a pseudo
stateless conversation if state cannot be saved between calls.

This document describes the IBM Security Identity Manager Web Services.

2 Architecture

2.1 Architecture overview
The IBM Security Identity Manager Web Services wrapper is a suite of web services
that are bundled as a single web application. The IBM Security Identity Manager Web
Services web application is packaged as a module of ITIM.ear and deployed as part
of ITIM.ear.

2.2 Architecture components
The IBM Security Identity Manager Web Services suite consists of:

 The IBM Security Identity Manager Web Services web application – bundled
with ITIM.ear file.

 The IBM Security Identity Manager Web Services client and data model (auto-
generated by client from WSDL)

The IBM Security Identity Manager Web Services wrapper is a J2EE web application.
The web application contains WSDL (Web Services Description Language) files for
each web service in the suite. The WSDL files describe the web services interface and
complex data types. You can use WSDL files while developing the Web Services
clients.

The IBM Security Identity Manager Web Services implementation is based on the IBM
WebSphere Application Server JAX WS 2.1.6 runtime.

3 Web Services functionality
The description about the web services suite functionality is as follows.
NOTE: The IBM Security Identity Manager Web Services suite currently only exposes
functionality that is required for servicing the end user IBM Security Identity Manager
tasks.
The IBM Security Identity Manager Web Services suite consists of multiple web
services, broken up by function. The document lists all the services alphabetically
except the WSSessionService because it is the first service to be called by any
application. The session object returned by its login method is used as a parameter in
all subsequent services.

The operations list of each web service is as follows.

3.1 WSSessionService
The WSSessionService provides authentication, session creation and password
challenge authentication methods. This web service login method is called by a client
before any of the other web services are invoked. The login method returns a session
(handle) object that must be passed to the other web service calls to maintain a
threaded conversation. The authentication method also supports Single Sign-On
(SSO) if the IBM Security Identity Manager is configured with SSO enabled. The
ISIMWebServices suite has a handler that intercepts calls into the web services to
check valid session information. It also handles session timeouts and cleanup.
This service also provides a method to login through the challenge response
authentication process in case of lost or forgotten passwords.

There are two ways in which session management can be done in the ISIM web
services.

◦ Client side session management: This is the default mode. In this mode the
session management is not done on the server side. The server does not
maintain any session information of the client. The client sends the LTPA
token to the server in every request as part of the WSSession object's
clientSession attribute. The server then constructs the subject from the
clientSession parameter and validates the user. In this scenario there is no
support for logout API. The client has to take the responsibility of discarding
the session.

◦ Server side session management: In this mode the sessions are cached on
the server side and logout is a valid API.

The property enrole.webServices.session.mgmt.clientSide in the
enrole.properties file enables to switch the modes. A value true means
the client mode is enabled.

WSSessionService supports the following methods:

 getChallengeQuestions
Note : Configure Responses before using this API .

 getItimFixpackLevel

 getItimVersion

 getItimVersionInfo

 getProperty

 getWebServicesBuildNumber

 getWebServicesTargetType

 getWebServicesVersion

 isPasswordEditingAllowed (this method returns the system property “Is
password editing allowed”

 login

 logout

 lostPasswordLoginDirectEntry (No longer supported)

 lostPasswordLoginResetPassword

WSSessionService supports the following methods:

Ø login
This API authenticates the user and returns the session object. This session object

is needed to use other web service APIs.

Input:
userID: The user ID of the IBM Security Identity Manager system user.
password: The password of the user.

Output:
session: The WSSession object that has the authenticated user

information.

Fault:
The fault message is returned with the message key and the message

parameters if the user cannot authenticate.

Ø logout
This API logs out the user from the current session.

Input:
session: The session from which the user is to logout.

Output:
None

Fault:
The fault message is returned with the message key and the message

parameters if the user can not be logged out.

3.2 WSAccountService
The WSAccountService provides methods to perform account related tasks. Other
than the basic account operations like create or modify, the service also provides
methods to perform related functions like getting default account attributes for a new
account as specified by the provisioning policy, or to get the account profile name for
a service.
WSAccountService supports the following methods:

 adoptAccounts

 adoptSingleAccount

 createAccount

 deprovisionAccount

 getAccountAttributes

 getAccountProfileForService

 getDefaultAccountAttributes

 getDefaultAccountAttributesByPerson

 modifyAccount

 orphanAccounts

 orphanSingleAccount

 restoreAccount

 searchAccounts

 suspendAccount

 updateAccount

3.3 WSGroupService
WSGroupService provides methods for group management that were introduced in
IBM Security Identity Manager 5.1. These methods allow a user to create groups,
remove groups, search for groups, and manage group membership.
The following methods are available:

 addGroupMembers

 createGroup

 getGroupMembers

 getGroupsByAccess

 getGroupsByAccount

 getGroupsByService

 lookupGroup

 removeGroup

 removeGroupMembers

3.4 WSOrganizationalContainerService
WSOrganizationalContainerService provides the IBM Security Identity Manager
organization tree traversal and retrieval methods.

 createContainer

 getOrganizations

 getOrganizationSubTree

 getOrganizationTree

 searchContainerByAttribute

 searchContainerByName

 searchContainerTreeByAttribute

 modifyContainer

 removeContainer

 lookupContainer

3.5 WSPasswordService
WSPasswordService provides password management functionality and supports the
following methods:

 changePassword

 generatePassword

 generatePasswordByService

 generatePasswordForService

 getPasswordRules

 getSelfPasswordChangeRules

 isPasswordValid

 joinRules

 selfChangePassword

3.6 WSPersonService
WSPersonService provides person object related methods. Apart from simple person
operations like create, modify, suspend, restore, and delete, the service also has
methods to get a person authorized services (services that a person is entitled to) in
the IBM Security Identity Manager or accounts, perform person searches, and get the
Principal person object.
WSPersonService supports the following methods:

 addRole

 addRolesToPerson

 createPerson

 deletePerson

 getAccountsByOwner

 getAuthorizedPersonProfilesForCreate

 getAuthorizedServices

 getFilteredAccountsByOwner

 getFilteredAuthorizedServices

 getPersonRoles

 getPrincipalPerson

 isCreatePersonAllowed

 isMemberOfRole

 lookupPerson

 modifyPerson

 removeRole

 removeRolesFromPerson

 restorePerson
Note : if password synchronization is enabled , then synchronized password
for person will be used , unless synchronized is not set , in this case new
password will be set as synchronized password , and then will be used .

 searchPersonsFromRoot

 searchPersonsWithItimAccount

 selfRegisterPerson

 suspendPerson

 suspendPersonAdvanced

 synchGeneratedPassword

 synchPasswords

 transferPerson

3.7 WSProvisioningPolicyService
The WSProvisioningPolicyService web service retrieves, creates, modifies, and
deletes provisioning policies. See the following sections for its operations.

 createPolicy

 deletePolicy

 getPolicies

 modifyPolicy

3.8 WSRoleService
The WSRoleService web service provides the capability to create a static role, modify
a static role, get member roles, update the role hierarchy by adding and removing
role members, lookup and search roles in the IBM Security Identity Manager.

WSRoleService supports the following methods:

 lookupRole

 lookupSystemRole

 searchRoles

 searchForRolesInContainer

 getMemberRoles

 createStaticRole

 modifyStaticRole

 updateRoleHierarchy

3.9 WSServiceService
The WSServiceService web service provides functionality related to the IBM Security
Identity Manager Services. The service has methods to get supporting data (for
example, what is called group data for UNIX, Linux or Windows services), and to
check if a password is required when provisioning on a service. It also has a method
to get services configured on the IBM Security Identity Manager.
WSServiceService supports the following methods:

 getServices

 getSupportingData

 getServiceForAccount

 isPasswordRequired

 lookupService

 searchServices

 testCommunications

 getSupportingDataEntries

 getAccountsForService

 createService

 modifyService

3.10WSSystemUserService
WSSystemUserService provides functionality related to system users. The service
also exposes delegation management functionality. WSSystemUserService supports
the following methods:

 addDelegate

 getChallengeResponseConfiguration

 getDelegates

 getExistingChallengeResponseInfo

 getSystemRoleNames

 getSystemUser

 getSystemUsersForPerson

 modifyDelegate

 removeDelegate

 searchSystemUsers

 setChallengeResponseInfo

3.11WSSearchDataService
WSSearchDataService provides functionality to search various IBM Security Identity
Manager directory objects. The search method does not enforce the IBM Security
Identity Manager ACIs, however a valid IBM Security Identity Manager session is
required to call these methods.

The service supports a generic search method which takes an array of parameters
like search base, search type, search filter, and others. It also has methods to

specifically support search requests that are executed while rendering search
controls, search matches and search filters on forms.

The service exposes following methods:

 findSearchControlObjects

 findSearchFilterObjects

 getAttributeNames

 getCommonPersonSearchAttributeNames

 searchData

 searchForDelegates

 searchPersonsFromRoot

 searchPersonWithITIMAccount

3.12WSRequestService
WSRequestService provides Ithe BM Security Identity Manager request related
functionality. The following methods are supported by WSRequestService:

 abortRequest

 getActivities

 getChildProcesses

 getcompletedRequests

 getCompletedRequestsPage

 getPendingRequests

 getProcess

 getRequest

 searchCompletedRequests

3.13WSToDoService
The WSToDoService web service lets a user access pending assignment items,
approve or reject assignment items, submit RFI items, and others. The following
methods are currently supported by WSToDoService:

 approveOrReject

 approveOrRejectGroups

 getAssignmentGroups

 getAssignments

 getItemsInAssignmnetGroup

 getRFI

 getEntityDetail

 submitRFI

3.14WSAccessService
WSAccessService provides functionality to create a user access, get existing user
access of a person, remove user access and search access entitlements available to
a person. The following methods are currently supported by WSAccessService:

 createAccess

 getAccesses

 removeAccess

 searchAvailableAccessEntitlements

3.15WSUnauthService
The WSUnauthService API provides an interface for all the web service APIs that do
not require the IBM Security Security Identity Manager authentication. The existing
methods belong to the WSPersonService, WSPasswordService, and
WSSessionService APIs. The following methods are currently supported by the
WSUnauthService API:

 getSelfPasswordChangeRules

 joinRules

 selfRegister

 getChallengeQuestions
Note : Configure Responses before using this API .

 getItimVersion

 getItimVersionInfo

 getItimFixpackLevel

 getWebServicesBuildNumber

 getWebServicesTargetType

 getWebServicesVersion

 lostPasswordLoginResetPassword

3.16WSExtensionService
WSExtensionService provides a framework to extend the existing web services used
by customers. The extended services can:

• Create a new operation to expose a new IBM Security Identity Manager API.
• Implement a custom business logic by calling a customer-provided class and

method.
• Pass the customer-provided data objects to the custom operation, and pass

back the customer-provided data objects returned from the custom operation
to the client.

• Use data model for XML translation capabilities to offer a generic transport for
customer data objects. The packaging includes XML to object and vice versa
utilities for Java 2 Platform, Enterprise Edition (J2EE) or Java. Other
environments must use their environment specific XML parsers.

NOTE: The custom business logic is executed on the server; however, all the calls
made to the web services go through the service end point interfaces as if the calls
were made from a remote client. Do not assume that the calls can be resolved by
passing the web services infrastructure.

Overview of WSExtensionService implementation

The WSExtensionService has an extendUsingXML method that accepts a customer-
provided business class name, method name and input parameters, and returns the
output. The customer must create the business class and associated data model
objects, package them into a .jar file, place them in the class path, and register the
business class name by using the $ITIM_HOME\data\wsExtensions.properties file.
The WSExtensionService resolves the business class at run time, calls the specified
method and returns the results.

The sections list the new service and the customer-provided artifacts that are
required for implementation. The following example provides detailed instructions to
create a sample extension.

1. The operation WSExtensionService.extendWithXML takes in the following
parameters:
(WSSession session, String extensionClassName, String methodName, String

paramsXML)

2. The method returns an XML string that represents the returned data object.
The WSExtensionService.extendWithXML method uses the
$ITIM_HOME\data\wsExtensions.properties file to search a key that has
the value as the business class name as specified by using the
extensionClassName input parameter. If the key exists, the extendWithXML
method instantiates the specified business class object, and calls the method.
The method that is called must use the following signature:
public String customMethodName(WSSessionExt session, String

paramsXML)
For example,
public String GetServiceGroups(WSSessionExt session, String

paramsXML)

Business class and method (provided by customer)
Place the business class in the class path of the server application and modify the
$ITIM_HOME\data\wsExtensions.properties file to add a new key with value that
matches the name of the business class. Package the business class and associated
model objects into a JAR file and add the JAR file as a shared library to the IBM
Security Identity Manager application by using the IBM WebSphere Application Server
(WAS) Administration Console. If you get “Class not found” exceptions, the IBM
WebSphere Application Server class loader might not be locating your class. Restart
the application after adding the JAR file of your business class to the class path of the
IBM Security Identity Manager application.

Example of implementing a new GetServiceGroups web service
operation:
This example implements a new GetServiceGroups web service operation which
performs multiple operations and returns a data object that contains the result.

Step 1: Define the business class and method to implement the custom
logic.
Define a regular Java class and add the method that implements the custom logic.
This example defines a SampleWSExtension class that contains a GetServiceGroups
method. The method must not be static and use following signature:

public String methodName(WSSessionExt session, String paramsXML);
The method uses the XMLBeanReader and XMLBeanWriter utility classes to translate
between XML and data objects. These utility classes are available in the
itim_ws_model.jar file. GetServiceGroups method uses the Subject and
PlatformContext information from the WSSessionExt parameter and makes multiple
API calls.

The GetServiceGroups custom method uses the XMLBeanReader utility class to
interpret it as a WSPerson instance. The method then performs its business logic and
returns a List<String> object after converting it to an XML string. The XMLBeanWrite
utility class performs the XML conversion.

Step 2: Deploy the custom JAR file.
1. Open the $ITIM_HOME\data\wsExtensions.properties file by using a text

editor.
2. Add a property with a value that matches the business class name and save

the file.
For example, extension.class1=com.ibm.custom.classname

3. Add the custom JAR file to the IBM WebSphere Application Server shared
library.

4. Create a new shared library at the IBM WebSphere Application Server cell
scope level and associate the library with the IBM Security Identity Manager
application, or reuse the ITIM_LIB shared library that is created during
installation of the IBM Security Identity Manager. The following example shows
detailed instructions to add custom JAR to the ITIM_LIB shared library in IBM
WebSphere Application Server 7.0.

1. In the left navigation pane, expand Environment > Shared libraries to
open the Shared Libraries page, as shown in the following figure:

2. Click ITIM_LIB to open the ITIM_LIB page.
3. Scroll till the end of the Classpath list and add your custom JAR file. The

following example shows the examples.jar file that is added to the list. The
entry must contain the full path to the JAR file. You might find the ITIM_HOME
variable to refer to a path in the ITIM_HOME directory. (It is not required to
place the JAR file in ITIM_HOME directory. You can place the JAR file anywhere
on the file system visible to the IBM WebSphere Application Server).

4. Click OK, and then click Save to save the changes to the IBM WebSphere
Application Server configuration.

5. Restart the IBM Security Identity Manager application by using the IBM
WebSphere Application Server Administration Console.

Step 3: Call the custom web service operation.
The WSExtensionServiceClient.java source file in $ITIM_HOME/extensions/
{RELEASE_VERSION}/examples/ws/src directory demonstrates the sample client
code to call the GetServiceGroups custom operation.

The WSExtensionService supports only the extendWithXML method.

3.17WSSharedAccessService
WSSharedAccessService provides many functions for the shared access module that
is introduced in IBM Security Identity Manager 6.0. Web service clients must call the
login method before calling any other web services. The login method returns a
session object that must be passed to the other web service calls in order to maintain
a threaded conversation. WSSharedAccessService supports the following methods:

Ø login
This API authenticates the user and returns the session object. This session object

is needed to use other web service APIs.

Input:
userID: The user ID of the IBM Security Identity Manager system user.
password: The password of the user.

Output:
session: The WSSession object that has the authenticated user

information.

Fault:
The fault message is returned with the message key and the message

parameters if the user cannot authenticate.

Ø logout
This API logs out the user from the current session.

Input:

session: The session from which the user is to logout.

Output:
None

Fault:
The fault message is returned with the message key and the message

parameters if the user can not be logged out.

Ø getAuthorizedSharedAccess
This API gets the authorized credentials and credential pools under the service

specified by the unique resource identifier (serviceURI) of the service. If the
service cannot be found by the service URI the fault message is returned.
Both exclusive and non-exclusive credentials are returned and meet these
criteria:

Each credential is associated with the corresponding active account.
Exclusive credential are not checked out.

Input:
session: The session for the logged on user.
serviceURI: The unique resource identifier for the service. Internally, this is

mapped to the erserviceuri attribute of a service.

Output:
One or more WSSharedAccess objects is returned. The WSSharedAccess

complex type has distinguished name, name and description of the
credential or credential pool, and describes whether it is a credential or
credential pool.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Identity Manager server.

Ø getCredential
This API gets the credential of specified credential component object. The

credential component can be a credential or credential pool. If the credential
needs to be checked out before getting the credential, this method
automatically checks out the credential. If the pool is specified as a credential
component, one of the credential from the pool is checked out. When the
credential is checked out, the credential is checked out synchronously without
the workflow even if the workflow is defined for credential checkout operation.

Input:
session: The session for the logged on user.
credCompDN: The distinguished name of the credential or credential pool.
justification: The justification for checking out the credential.

duration: The number of hours until the checked out credential expires.

Output:
The WSCredential object is returned with the following attributes:

userID: The user ID of the credential.
password: The password of the user. A null value is returned if the

password is not yet registered for the non-exclusive credential.
leaseInfo: The WSLeaseinfo object that has the expiration date and

distinguished name of lease object.
isPasswordViewable: The boolean flag that tells whether the

password can be shown to the user. This attribute is one of the
credential configuration settings.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Identity Manager server.

Ø getCredentialAttributes
This API gets the account attribute values for the credential component object.

The credential component can be a credential or credential pool. If the
credential needs to be checked out before getting the credential, this method
automatically checks out the credential. If the pool is specified as a credential
component, one of the credential from the pool is checked out. When the
credential is checked out, the credential is checked out synchronously without
the workflow even if the workflow is defined for credential checkout operation.

Input:
session: The session for the logged on user.
credCompDN: The Distinguished Name of the credential or credential pool.
attributeNames: The list of account attribute names. For example, “eruid”

and “erpassword” need to be used for the user id and the password.
justification: The justification for checking out the credential.
duration: The number of hours until the checked out credential expires.

Output:
leaseInfo: The WSLeaseinfo object that has the expiration and leaseDN

information. If the credential is checked out, then the lease information
is returned.

attributes: The list of the WSAttribute objects. The WSAttribute has the
attribute name and the value pair. If the attribute cannot be found on
the account, then the value would not be populated in this list.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Identity Manager server.

Ø checkIn
This API checks in the credential.

Input:

session: The session for the logged on user.
leaseDN: The Distinguished Name of credential lease.

Output:
requestID: The request ID for checking in the credential.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to check in the credential
or if the application exception is thrown internally by the IBM Security
Identity Manager server.

Ø checkInAllIDs
This API checks in all the checked out credentials that the logged on user has

checked out.

Input:
session: The session for the logged on user.

Output:
requestID: The list of request ID for checking in all the credential.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to check in the credential
or if the application exception is thrown internally by the IBM Security
Identity Manager server.

Ø checkoutWithoutWorkflow
This API checks out the credential of the specified credential component object

without using the workflow. The credential component can be a credential or
credential pool. If the pool is specified as a credential component, one of the
credentials from the pool is checked out. When the credential is checked out,
the credential is checked out synchronously without the workflow, even if the
workflow is defined for credential checkout operation.

NOTE: The checkoutWithoutWorkflow method is provided for automated agents
and applications that can not wait for completion of workflow processes. Use
this method only when the client cannot use the checkout() method. Custom
process activities are not executed by the checkoutWithoutWorkflow
method. If custom process activities are required, you must use the
checkout() method.

Input:
session: The session for the logged on user.
credCompDN: The Distinguished Name of the credential or credential pool.
justification: The justification for checking out the credential.
duration: The number of hours until the checked out credential expires.

Output:
The WSCredential object is returned with the following attributes:

userID: The user ID of the credential.
password: The password of the user. A null value is returned if the

password is not yet registered for the non-exclusive credential.
leaseInfo: The WSLeaseinfo object that has the expiration date and

distinguished name of lease object.
isPasswordViewable: The boolean flag that tells whether the

password can be shown to the user. This attribute is one of the
credential configuration settings.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to check out the credential
or if the application exception is thrown internally by the IBM Security
Identity Manager server.

Ø checkout
This API checks out the credential of the specified credential component object.

The credential component can be a credential or credential pool. If the pool is
specified as a credential component, one of the credentials from the pool is
checked out. If the workflow is defined for the checkout operation the request
is submitted to the workflow and the request id is returned. If the workflow is
not defined the credential is checked out and the credential information is
returned.

When a global life cycle operation is defined to invoke the checkout() workflow
extension, the checkout of shared accounts is done asynchronously. For this
scenario, you must also configure the operation name in the Shared Access
Module global setting.
NOTE: If there is no life cycle operation defined to invoke the checkout()
workflow extension, check out of shared accounts is done synchronously.

Input:
session: The session for the logged on user.
credCompDN: The Distinguished Name of the credential or credential pool.
justification: The justification for checking out the credential.
duration: The number of hours until the checked out credential expires.

Output:
Either WSCredential or the requestID is returned. If the workflow is

defined for the checkout operation, then the request is submitted to the
workflow and the request ID is returned. If the workflow is not defined
then the WSCredential object that has the following attributes is
returned:

userID: The user ID of the credential.
password: The password of the user. A null value is returned if the

password is not yet registered for the non-exclusive credential.
leaseInfo: The WSLeaseinfo object that has the expiration date and

distinguished name of lease object.
isPasswordViewable: The boolean flag that tells whether the

password can be shown to the user. This attribute is one of the
credential configuration settings.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to check out the credential
or if the application exception is thrown internally by the IBM Security
Identity Manager server.

Ø getAuthorizedSharedAccessByServiceDN

This API gets the authorized credentials and credential pools under the service
specified by the distinguished name of the service. If the service cannot be
found by the distinguished name of the service the fault message is returned.
Both exclusive and non-exclusive credentials are returned and meet these
criteria:

Each credential is associated with the corresponding active account.
Exclusive credential are not checked out.

Input:
session: The session for the logged on user.
serviceDN: The distinguished name of a service.

Output:
One or more WSSharedAccess objects is returned. The WSSharedAccess

complex type has distinguished name, name and description of the
credential or credential pool, and describes whether it is a credential or
credential pool.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Identity Manager server.

Ø getAllAuthorizedSharedAccess
This API gets the authorized credentials and credential pools under the service

specified by the unique resource identifier (serviceURI) of the service. If the
service cannot be found by the service URI the fault message is returned.
Both exclusive and non-exclusive credentials are returned and meet these
criteria:

Each credential is associated with the corresponding active account.
Exclusive credential including the ones that are already checked out by

logged on user or by other users.

Input:
session: The session for the logged on user.
serviceURI: The unique resource identifier for the service. Internally, this is

mapped to the erserviceuri attribute of a service.

Output:
One or more WSSharedAccess objects is returned. The WSSharedAccess

complex type has distinguished name, name and description of the
credential or credential pool, and describes whether it is a credential or
credential pool.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Identity Manager server.

Ø getAllAuthorizedSharedAccessByServiceDN
This API gets the authorized credentials and credential pools under the service

specified by the distinguished name of the service. If the service cannot be
found by the distinguished name of the service the fault message is returned.

Both exclusive and non-exclusive credentials are returned and meet these
criteria:

Each credential is associated with the corresponding active account.
Exclusive credential including the ones that are already checked out by

logged on user or by other users.

Input:
session: The session for the logged on user.
serviceDN: The distinguished name of a service.

Output:
One or more WSSharedAccess objects is returned. The WSSharedAccess

complex type has distinguished name, name and description of the
credential or credential pool, and describes whether it is a credential or
credential pool.

Fault:
The fault message is returned with the message key and the message

parameters when the user is not authorized to get the credential or if
the application exception is thrown internally by the IBM Security
Identity Manager server.

4 Example code to use the IBM Security
Identity Manager Web Services

The IBM Security Identity Manager Web Services may be accessed by using the
supplied WSDL files and auto generating the client, or using the WSDL directly to
access the web services.

To get a handle on the Service interface by using JAX WS, adhere to the following
code path.

Example1:

//Obtaining an handle on the service interface. This is the entry point for
//accessing the WSSessionService methods. The WSSessionService_Service or for that matter all the
//other services have an overloaded constructor where in you can pass in the WSDL URL (i.e. the location
//where the WSDL file is published. It can be a file, ftp or any other URL which obeys the URL
//Specification.

//The default constructor loads the WSDL file from the META-INF/wsdl folder of the client jar file.

WSSessionService_Service service = new WSSessionService_Service();

//Obtaining the port of the service.

WSSessionServicePortProxy port = service.getWSSessionServicePort();

//We can make the WSSessionService operation calls on the port object.

Port.login(username, password);

Example 2:

//Here we will directly use the WSDL published on the IBM Security Identity Manager server to create the
web service proxy

WSSessionService_Service service = new
WSSessionService_Service(“http://localhost:9080/itim/services/WSSessionService/WEB-
INF/wsdl/WSSessionService.wsdl”, new QName("http://services.ws.itim.ibm.com", "WSSessionService")

WSSessionServicePortProxy port = service.getWSSessionServicePort();

. Using the pre-compiled Java client.

Once the web service factory class is instantiated, the instance must be reused to get
an instance of any of the web services.
// Get the Service object
WSSessionService_Service service = new WSSessionService_Service();

// Get an instance of WSSessionService from the web service factory
WSSessionService port = service.getWSSessionServicePort();

1.1 Authentication, Challenge Response, and System Information
examples

4.1.1 Example: Authenticate to IBM Security Identity Manager and get a
session handle

String userid = “gverma”;
String password = “secret”;
// Get an instance of WSSessionService from the web service factory
WSSessionService_Service sessionService = new WSSessionService_Service();
// login and get a session
WSSession session = sessionService..getPort().login(userid, credential);

4.1.2 Example: Login via challenge response questions for a user (lost
password behavior)

// Assume that a sessionService is already instantiated as shown in Example 6.1-1
String userid=”gverma”;
Collection criList = new ArrayList(); // List to hold each challenge and response info.
try {
String[] challenges = sessionService.getChallengeQuestions(userid);
for (int i = 0; i < challenges.length; i++) {
WSChallengeResponseInfo cri = new WSChallengeResponseInfo();
cri.setQuestion(challenges[i]);
// At this point, this example assumes that the answer is available in string variable
// “answer” thru user interaction.
cri.setAnswer(answer);
criList.add(cri);
}
WSChallengeResponseInfo[] crInfos =
(WSChallengeResponseInfo[]) criList.toArray(new WSChallengeResponseInfo[criList.size()]);
WSSession session = sessionService.lostPasswordLoginDirectEntry(userid, crInfos);
// Depending on what challenge response behavior is needed, the client can opt to reset the ISIM // service
password instead of direct login via Challenge Response. Uncomment the below line (and // comment the
above statement to get this behavior
// String requestId = sessionService.lostPasswordLoginResetPassword(userid, crInfos);
}
catch (WSLoginServiceException e) {
e.printStackTrace();
}
catch (RemoteException e) {
e.printStackTrace();
}
//……other exceptions omitted

Get the IBM Security Identity Manager Version and Fixpack level

float itimVersion = sessionService.getItimVersion();
int itimFixpackLevel = sessionService.getItimFixpackLevel();

Get the IBM Security Identity Manager Web Services version (informational
only)
float webServiceVersion = sessionService.getWebServicesVersion();
int webServiceBuildNumber = sessionService.getWebServicesBuildNumber();

1.2 Person related task examples

All the examples below assume an ITIMWebServiceFactory instance named
webServiceFactory, and a valid session in a WSSession object named session.

4.1.3 Example: Get principal person (get the person object of the logged in
person)

// Assume that a web service factory instance and session have already been established as shown in
Example 4.1.1
WSPersonServiceService personService = new WSPersonServiceService();
WSPerson person = personService.getWSPersonService().getPrincipalPerson(session);
// Now that we have the principal’s person object, get the person’s name
String name = person.getName();
// get the person’s attributes
WSAttribute[] wsAttributes = person.getAttributes();
// Convenience code: Change attributes from Array to a Collection
Collection attributes = Arrays.asList(wsAttributes);
// Get a specific attribute and its value
WSAttribute attribute = WSAttrUtils.getWSAttribute(wsAttributes, “sn”);
String lastName = WSAttrUtils.getSingleValue(attribute);
// or
String lastName = attribute.getValues()[0];

4.1.4 Example: Create person

// This example first searches for an OrganizationalUnit called “Finance”, then
// creates a custom person of the type “BluePerson” in that OU.
WSOrganizationalContainerService_Service containerService = new
WSOrganizationalContainerService_Service();
WSPersonService_Service personService = new WSPersonService_Service();
// First, search for an OU called Finance to anchor the person. We set the search to look for org units.
String containerProfile = WSObjectCategoryConstants.ORGUNIT; // Constant choices are // ORGUNIT //
LOCATION // ORGANIZATION (although
// you can use other
// methods to search for
// organizations)
// SECURITY_DOMAIN
String containerName = "Finance"; // Container name to search. You can also use wildcard

// character * as a prefix or suffix.
// Search for container named Finance starting at the root . We use the searchContainerByName method.
The other choices are
// searchContainerByAttribute, getOrganizations, getOrganizationTree and getOrganizationSubTree
methods to get organizational
// containers. In the call to searchContainerByName below, we pass a parent container of null which starts
the search at the
// organizational tree root.
WSOrganizationalContainer[] wsContainers = containerService.searchContainerByName(session, null,
containerProfile, containerName);
if (wsContainers != null && wsContainers.length > 0) {
System.out.println("Found " + wsContainers.length + " containers for " + containerName);
// Set the parent container for the person. If the search found more than 1 container, select
// the one you want. We arbitrarily choose the first found container in this example.
WSOrganizationalContainer parentContainer = wsContainers[0];
// Create a person value object.
WSPerson wsPerson = new WSPerson();
Collection attrList = new ArrayList();
wsPerson.setProfileName("BluePerson"); // IMPORTANT: Set the correct profile name. This
// example uses a custom person entity called
// BluePerson.
// Populate the custom blueId attr
WSAttribute wsAttr = new WSAttribute("blueId", new String[] {"Blue-1022"});
attrList.add(wsAttr);
// Populate the mandatory cn and sn attributes
wsAttr = new WSAttribute("cn", new String[] {"Ben Franklin"});
attrList.add(wsAttr);

wsAttr = new WSAttribute("sn", new String[] {"Franklin"});
attrList.add(wsAttr);
// Add any more attrs to the Collection attrList, and set attributes on person object.
WSAttribute[] wsAttrs = (WSAttribute[])attrList.toArray(new WSAttribute[attrList.size()]);
wsPerson.setAttributes(wsAttrs);
// Submit a person create request
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date());
WSRequest request = personService.createPerson(session, parentContainer, wsPerson, calendar);
System.out.println("Submitted person create request id = " + request.getRequestId());
} else {
System.out.println("No container found matching " + containerName);

4.1.5 Example: Modify person (including roles)

// This example assumes that wsAttributes contains the modified attributes of a person.
String personDN; // This should be set to the DN of the person to be modified.
WSAttribute[] wsAttributes; // this should be set to the modified attributes.
WSRequest request = personService.modifyPerson(session, personDN, wsAttributes);
System.out.println(“Request id of modify person request is : “ request.getRequestId());

4.1.6 Example: Suspend person example

// The personDN is assumed to contain the DN of the person to be suspended. Assumes that
// a previous search or other operation was made to search for the person to be suspended.
String personDN; // This should be set to the DN of the person to be suspended.
WSRequest request = personService.suspendPerson(session, personDN);

4.1.7 Example: Search person example

// This method is available as a convenience. The WSSearchDataService provides the
// implementation.
String ldapFilter = “(employeeNumber=12345)”;
String[] attrList = null; // Optional, supply an array of attribute names to be returned.
// A null value will return all attributes.
WSPerson[] persons = personService.searchPersonsFromRoot(session, filter, attrList);
// Print out the person name and DN from the search results
for (int i = 0; i < persons.length; i++) {
WSPerson person = persons[i];
System.out.println(“Name: “ + person.getName() + “, dn: “ + person.getItimDN());
}

4.1.8 Example: Search persons with an IBM Security Identity Manager
account

// This method is available as a convenience. The WSSearchDataService provides the
// implementation.
String ldapFilter = “(employeeNumber=12345)”;
String[] attrList = null; // Optional, supply an array of attribute names to be returned.
// A null value will return all attributes.
List<WSPerson> lstPerson = personService.searchPersonsWithITIMAccount(session, filter, attrList);

4.1.9 Example: Get authorized services for a person (services on which a
person is authorized to have a new account)

String personDN = personService.getPrincipalPerson(session).getItimDN();
Collecton serviceList = personService.getAuthorizedServices(session, personDN);
// Convenience code to print out the names and DNs of each service

for (Iterator iter = serviceList.iterator(); iter.hasNext();) {
WSService service = (WSService) serviceList.next();
System.out.println(“Service name is “ + service.getName() + “ with DN: “ +
service.getItimDN());
}

4.1.10Example: Get principal person's roles

String personDN = personService.getPrincipalPerson(session).getItimDN();
List<WSRole> roles = personService.getPersonRoles(session, personDN);

4.1.11Example: Check if person is member of role

String personDN = personService.getPrincipalPerson(session).getItimDN();
String roleDN; // This should be set to the DN of the role to be checked.
boolean isMember = personService.isMemberOfRole(session, personDN, roleDN);

4.1.12Example: Add role

This operation adds a single role to a person and submit a modify request. To add
multiple roles to a person, avoid using the addRole operation repeatedly. Instead,
add the roles (role DNs) to the “erroles” attribute on the WSPerson object and
submit a single modifyPerson operation.

Lsit<WSRole> roles = roleService.searchRoles(session, "(errolename=FinanceAdmin)");
// This example assumes that only one role is returned from the search.
String roleDN = roles.get(0).getItimDN();

String personDN = personService.getPrincipalPerson(session).getItimDN();
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date()); // Set date to current time or to the date / time when the request
// should be submitted
WSRequest request = personService.addRole(session, personDN, roleDN, calendar);

4.1.13Example: Remove role

The removeRole operation is very similar to the addRole operation. It removes the
specified role from the person and submits a modify request to the IBM Security
Identity Manager. To delete multiple roles from a person, avoid using the removeRole
operation repeatedly. Instead, delete the roles (role DNs) from the “erroles”
attribute on the WSPerson object and submit a single modifyPerson operation.

4.1.14Example: Synchronize passwords and synchronize generated
password

The synchPasswords operation submits a request to synchronize passwords for
person accounts. The synchGeneratedPassword creates a system generated
password that satisfies the password policy and uses that to synchronize the
passwords.

String personDN = personService.getPrincipalPerson(session).getItimDN();
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date());
String newPassword="newSecret";
boolean notifyByMail = false; // See usage in synchPasswords – only used in ITIM 5.0 onwards.
// It will be ignored in ITIM 4.6.
// Submit a synchPasswords by specifying the new password
WSRequest syncRequest = personService.synchPasswords(session, personDN,
newPassword, calendar, notifyByMail);
// Or have the system generate a new password and synchronize it.
WSRequest syncRequest2 = personService.synchGeneratedPassword(session,
personDN, calendar);

4.1.15Example: Add roles to person

Assigns the person to more than one roles.
WSRequest wsRequest = personService.addRolesToPerson(wsSession, personDN, roleDNlist, date);

4.1.16Example: Remove person from roles

Removes person from the roles.
WSRequest wsRequest = personService.removeRolesFromPerson(wsSession, personDN, roleDNlist, date);

4.1.17Example: Transfer person

Transfers a person.
WSRequest wsRequest = personService.transferPerson(wsSession, personDN, wsContainer, date);

1.3 Account related task examples

All the examples below assume an ITIMWebServiceFactory instance named
webServiceFactory, and a valid session in a WSSession object named session.

4.1.18Example: Create account

// Get the account web service.
WSAccountServiceService accountService = new WSAccountServiceService();
// Set the service on which the account is to be created. The authorized services for
// a person can be retrieved by using the WSPersonService’s getAuthorizedServices() method.
// Select one of the WSService instances to create the account on.
WSService service; // Set this to the service on which the account is to be created.
String serviceDN = service.getItimDN():
WSAttribute[] wsAttributes; // Set this to contain the account attributes
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date()); // Set date to current time or to the date / time when the request
// should be submitted
WSRequest request = accountService.getAccountService().createAccount(session, serviceDN,
wsAttributes, calendar);

4.1.19Example: Deprovision account

// Get accounts, say by by using the WSPersonService’s getAccountsByOwner method.
// Select one of the WSAccount objects to be deprovisioned.
WSAccount account; // Set this to the WSAccount instance to be used.
String accountDN = account.getItimDN();
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date()); // Set date to current time or to the date / time when the request
// should be submitted
WSRequest request = accountService.deprovisionAccount(session, accountDN, calendar);

4.1.20Example: Get account attributes

// Get accounts, say by by using the WSPersonService’s getAccountsByOwner method.
// Select one of the WSAccount objects to be deprovisioned.
WSAccount account; // Set this to the WSAccount instance to be used.
String accountDN = account.getItimDN();
List<WSAttribute> attributes = accountService.getAccountAttributes(session, accountDN);

4.1.21Example: Get account profile for service

This is a convenience method provided since the IBM Security Identity Manager API
does not have a published way of getting this. It is used internally by the
WSAccountService createAccount method and is published as a convenience. It can
also be used to get the form template XML for a new account on a service.
String serviceDN; // Set this to the DN of service whose account profile name is needed.
String accountProfile = accountService.getAccountProfileForService(session, serviceDN);

4.1.22Example: Get default account attributes (helpful before provisioning
a new account)

This method returns back an array of WSAttribute objects that contain the default
attribute values as per the provisioning policies in place. At a minimum, it returns the
eruid attribute (user id) from the identity policy.
String serviceDN; // Set this to the DN of the service whose account’s default values are sought
List<WSAttribute> defaultAttributes = accountService.getDefaultAccountAttributes(session, serviceDN);

4.1.23Example: Modify account

// Get accounts, say by by using the WSPersonService’s getAccountsByOwner method.
// Select one of the WSAccount objects to be deprovisioned.
WSAccount account; // Set this to the WSAccount instance to be used.
String accountDN = account.getItimDN();
WSAttribute[] attributes; // Set this to the attributes to be modified
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date()); // Set date to current time or to the date / time when the request
// should be submitted
WSRequest request = accountService.modifyAccount(session, accountDN, attributes);

4.1.24Example: Restore account

// Get accounts, say by by using the WSPersonService’s getAccountsByOwner method.
// Select one of the WSAccount objects to be deprovisioned.
WSAccount account; // Set this to the WSAccount instance to be used.
String accountDN = account.getItimDN();
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date()); // Set date to current time or to the date / time when the request
// should be submitted
String newPassword; // Set this to the new password if a password is required for restore,
// else set to null.
WSRequest request = accountService.restoreAccount(session, accountDN, attributes);

4.1.25Example: Suspend account

// Get accounts, say by by using the WSPersonService’s getAccountsByOwner method.

// Select one of the WSAccount objects to be deprovisioned.
WSAccount account; // Set this to the WSAccount instance to be used.
String accountDN = account.getItimDN();
Calendar calendar = Calendar.getInstance();
calendar.setTime(new Date()); // Set date to current time or to the date / time when the request
// should be submitted
WSRequest request = accountService.suspendAccount(session, accountDN, attributes);

4.2 Role object related tasks
All the examples below assume an ITIMWebServiceFactory instance named
webServiceFactory, and a valid session in a WSSession object named session.

4.2.1 Example: Lookup a role by its DN

WSRoleServiceService roleService = new WSRoleServiceService();
String roleDN; // Set this to the DN of the role to be looked up.
WSRole role = roleService.getRoleServicePort().lookup(session, roleDN);

4.2.2 Example: Lookup a system role (ISIM Group)

WSRoleServiceService roleService = new WSRoleServiceService();
String sysroleDN; // Set this to the DN of the system role to be looked up.
WSRole role = roleService.getRoleServicePort().lookupSystemRole(session, sysroleDN);

4.2.3 Example: Search roles by filter

WSRoleServiceService roleService = new WSRoleServiceService();
String filter = “(errolename=Finance*)”; // Set a valid LDAP filter
List<WSRole> roles = roleService.getRoleServicePort().lookup(session, filter);

4.2.4 Example: Create static role

WSRoleServiceService roleService = new WSRoleSerivceService();
roleService.createStaticRole(session, wsContainer, wsRole);

4.2.5 Example: Get member roles

WSRoleServiceService roleService = new WSRoleSerivceService();
List<WSRole> membRoles = roleService. getMemberRoles(session, roleDN);

4.2.6 Example: Update role hierarchy

WSRoleServiceService roleService = new WSRoleSerivceService();
roleService. updateRoleHierarchy(session, roleDN, rolesAddedDN[],rolesDeletedDN[],date);

4.3 Organizational Container object related tasks

4.3.1 Example: Get Organization sub-tree

WSOrganizationalContainerService wsOrgContainerService = this.getWSOrganizationalContainerService();
WSOrganizationalContainer parentWSOrgContainer = this.getParentWSOrgContainer(wsSession,
parentOrg, wsOrgContainerService);
WSOrganizationalContainer wsOrgContainerSubTree =
wsOrgContainerService.getOrganizationSubTree(wsSession, parentWSOrgContainer);
if(wsOrgContainerSubTree != null){

executedSuccessfully = true;
printWSOrgContainerDetails(wsOrgContainerSubTree);

}

4.3.2 Example: Search container by attribute

WSSession wsSession = loginIntoITIM(principle, credential);
WSOrganizationalContainerService wsOrgContainerService = this.getWSOrganizationalContainerService();

WSOrganizationalContainer parentWSOrgContainer = this.getParentWSOrgContainer(wsSession,
parentOrg, wsOrgContainerService);
List<WSOrganizationalContainer> lstWSORganizationalContainers =
wsOrgContainerService.searchContainerByAttribute(wsSession, parentWSOrgContainer, attrName,
attrValue);
if(lstWSORganizationalContainers != null && lstWSORganizationalContainers.size() > 0){

executedSuccessfully = true;
//Print Details of the Containers which are returned
for(WSOrganizationalContainer wsOrgContainer : lstWSORganizationalContainers){

printWSOrgContainerDetails(wsOrgContainer);
}

}else{
System.out.println(" There are no organizational containers matching the attribute name " +

attrName + " and attribute value " + attrValue);
}

4.3.3 Example: Create container

WSSession wsSession = this.loginIntoITIM(principle, credential);
WSOrganizationalContainer newWSContainer =
createWSOrganizationalContainerFromAttributes(mpParams);
WSOrganizationalContainerService service = this.getWSOrganizationalContainerService();
List<WSOrganizationalContainer> lstOrgContainers = service.searchContainerByName(wsSession, null,
ORG_CONTAINER_PROFILE_NAME, parentOrg);
WSOrganizationalContainer parent = null;
if(lstOrgContainers != null && lstOrgContainers.size() > 0){

parent = lstOrgContainers.get(0);
}else{

System.out.println(" Not able to locate the parent container with name " + parentOrg);
}
WSOrganizationalContainer wsOrgContainer = service.createContainer(wsSession, parent,
newWSContainer);

4.3.4 Example: Remove container

WSSession wsSession = loginIntoITIM(principle, credential);
WSOrganizationalContainerService wsOrgContainerService = this.getWSOrganizationalContainerService();
WSOrganizationalContainer wsContainer = null;
String containerName = (String) mpParams.get(PARAM_ORG_CONTAINER);
if (containerName != null) {

List<WSOrganizationalContainer> lstWSOrgContainers = wsOrgContainerService
.searchContainerByName(wsSession, null,"OrganizationalUnit", containerName);

if (lstWSOrgContainers != null
&& !lstWSOrgContainers.isEmpty()) {
wsContainer = lstWSOrgContainers.get(0);

} else {
System.out.println("No container found matching "

+ containerName);
return false;

}

} else {
System.out.println("No Filter parameter passed for the container name.");
return false;

}
String containerDN = wsContainer.getItimDN();
wsOrgContainerService.removeContainer(wsSession, containerDN);

4.3.5 Example: Lookup container

WSSession wsSession = loginIntoITIM(principle, credential);
WSOrganizationalContainerService wsOrgContainerService = this.getWSOrganizationalContainerService();
WSOrganizationalContainer wsContainer = null;
String containerName = (String) mpParams.get(PARAM_ORG_CONTAINER);
if (containerName != null) {

List<WSOrganizationalContainer> lstWSOrgContainers = wsOrgContainerService
.searchContainerByName(wsSession, null,

"OrganizationalUnit", containerName);
if (lstWSOrgContainers != null

&& !lstWSOrgContainers.isEmpty()) {
wsContainer = lstWSOrgContainers.get(0);

} else {
System.out.println("No container found matching "

+ containerName);
return false;

}
} else {

System.out.println("No Filter parameter passed for the container name.");
return false;

}
String containerDN = wsContainer.getItimDN();
WSOrganizationalContainer wsOrgContainer = wsOrgContainerService.lookupContainer(wsSession,
containerDN);

1.4 Service object related tasks

4.3.6 Example: Get Services

WSSession session = loginIntoITIM(principle, credential);
WSServiceService wsService = getServiceService();
List<WSService> listWsService = wsService.getServices(session);
for (Iterator iterator = listWsService.iterator(); iterator

.hasNext();) {
WSService service = (WSService) iterator.next();
Utils.printMsg(WSServiceServiceClient.class.getName(), "execute", this.name(),

"\n Service Name : " + service.getName() + " \n " +
"\n Service Profile Name : " + service.getProfileName() + " \n " +
"\n Service DN : " + service.getItimDN());

}

4.3.7 Example: Get Account for service

WSSession session = loginIntoITIM(principle, credential);
WSServiceService wsService = getServiceService();
String serviceName = (String)mpParams.get("serviceName") ;
String filter="(erservicename="+serviceName+")";
String serviceDN = wsService.searchServices(session, null, filter).get(0).getItimDN();
List<WSAccount> listWsAccount = wsService.getAccountsForService(session,serviceDN ,
(String)mpParams.get("accountID"));
for (Iterator iterator = listWsAccount.iterator(); iterator

.hasNext();) {
WSAccount account = (WSAccount) iterator.next();
Utils.printMsg(WSServiceServiceClient.class.getName(), "execute", this.name(),

"\n Account Name : " + account.getName() + " \n " +
"\n Account Profile Name : " + account.getProfileName() + " \n " +
"\n Account DN : " + account.getItimDN());

}

4.3.8 Example: Service search

WSSession session = loginIntoITIM(principle, credential);
WSServiceService wsService = getServiceService();
List<WSService> listWsService = wsService.searchServices(session, null, (String)mpParams.get("filter"));
for (Iterator iterator = listWsService.iterator(); iterator

.hasNext();) {
WSService service = (WSService) iterator.next();
Utils.printMsg(WSServiceServiceClient.class.getName(),

"execute", this.name(), "\n Service Name : "
+ service.getName() + " \n "
+ "\n Service Profile Name : "
+ service.getProfileName() + " \n "
+ "\n Service DN : " + service.getItimDN());

}

4.3.9 Example: Get service for an account

WSSession session = loginIntoITIM(principle, credential);
WSServiceService wsService = getServiceService();
WSAccountServiceService wsaccount = new WSAccountServiceService();
WSAccountService proxy = wsaccount.getWSAccountService();
WSSearchArguments searchArgs = new WSSearchArguments();
searchArgs.setFilter("eruid="+accountID);
String accountDN=proxy.searchAccounts(session, searchArgs).get(0).getItimDN();
WSService service = wsService.getServiceForAccount(session, accountDN);
Utils.printMsg(WSServiceServiceClient.class.getName(),

"execute", this.name(), "\n Service Name : "
+ service.getName() + " \n "
+ "\n Service Profile Name : "
+ service.getProfileName() + " \n "
+ "\n Service DN : " + service.getItimDN());

4.3.10Example: Create service

WSSession wsSession = loginIntoITIM(principle, credential);
WSOrganizationalContainerService wsOrgContainerService = getOrganizationalContainerService();
WSOrganizationalContainer wsContainer = null;
String containerName = (String) mpParams.get(PARAM_ORG_CONTAINER);
mpParams.remove(PARAM_ORG_CONTAINER);
if (containerName != null) {

List<WSOrganizationalContainer> lstWSOrgContainers = wsOrgContainerService
.searchContainerByName(wsSession, null,

"OrganizationalUnit", containerName);
if (lstWSOrgContainers != null

&& !lstWSOrgContainers.isEmpty()) {
wsContainer = lstWSOrgContainers.get(0);

} else {
System.out.println("No container found matching "

+ containerName);
return false;

}
} else {

System.out.println("No Filter parameter passed for the container name.");
return false;

}
String containerDN = wsContainer.getItimDN();
// The remaining input parameters represents service attributes. They will be passed
// to the underlying web service as a list of WSAttributes.
List<WSAttribute> serviceAttributes = getWSAttributesList(mpParams, "CREATESERVICE",

this.name());

WSServiceService wsServiceServiceObj = getServiceService();
String nameOfCreatedService = wsServiceServiceObj.createService(wsSession,

containerDN, profileName, serviceAttributes);

4.3.11Example: Modify service

WSSession wsSession = loginIntoITIM(principle, credential);
WSServiceService wsService = getServiceService();
String filter = "(erservicename=" + serviceName + ")";
String serviceDN = wsService.searchServices(wsSession, null, filter).get(0).getItimDN();
// The remaining input parameters represents service attributes. They will be passed
// to the underlying web service as a list of WSAttributes.
List<WSAttribute> serviceModifiedAttributes = getWSAttributesList(mpParams,

"MODIFYSERVICE", this.name());

wsService.modifyService(wsSession, serviceDN, serviceModifiedAttributes);

4.4 To Do task related

4.4.1 Example: Get Assignments

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();
List<WSAssignment> wsAssignmentList = wsToDoService

.getAssignments(session);

4.4.2 Example: Get RFI

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();
WSRFIWrapper wrapperWSRFI = wsToDoService.getRFI(session,

rfiAssignmentId);

4.4.3 Example: Get Entity detail

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();
long assignmentId = Long.parseLong(assgnID.trim());
WSEntityWrapper entityWrapper = wsToDoService.getEntityDetail(

session, assignmentId);

4.4.4 Example: Submit RFI

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();

long rfiAssignmentId = Long.parseLong(assgnID.trim());
WSRFIWrapper wrapperWSRFI = wsToDoService.getRFI(session,

rfiAssignmentId);

ArrayOfTns1WSAttribute rfiAttr = wrapperWSRFI.getWsAttrValues();
List<WSAttribute> wsRFIAttr = rfiAttr.getItem();

//Assuming that the RFI is for an account entity

//and that all the attributes for which the input is requested has string syntax
//Providing a constant string value "RFIVal" for input.
for (WSAttribute attr : wsRFIAttr) {

String attrName = attr.getName();
if(!attrName.equalsIgnoreCase("erservice") && !attrName.equalsIgnoreCase("target_dn") && !

attrName.equalsIgnoreCase("container_dn")) {
ArrayOfXsdString attrVal = new ArrayOfXsdString();
attrVal.getItem().add("RFIVal");
attr.setValues(attrVal);

}
}
wsToDoService.submitRFI(session, wrapperWSRFI);

4.4.5 Example: Approve or Reject

WSSession session = loginIntoITIM(principle, credential);
WSToDoService wsToDoService = getToDoService();
List<WSAssignment> wsAssignmentList = wsToDoService

.getAssignments(session);

List<Long> activityIds = new ArrayList<Long>();
for (WSAssignment assignment : wsAssignmentList) {

activityIds.add(assignment.getId());
}
wsToDoService.approveOrReject(session, activityIds,

approvalStatus, explanation);

4.5 Access Service related task

4.5.1 Example: Create an Access

WSSession session = loginIntoITIM(principle, credential);
WSAccessService accessService = getAccessService();
List<WSAccessEntitlement> listWSAccessEntitlement =
accessService.searchAvailableAccessEntitlements(wsSession, null,

personDN, null, accessName);
List<WSNewUserAccess> wsNewUserAccessLst = new ArrayList<WSNewUserAccess> ();
WSNewUserAccess wnua = new WSNewUserAccess();
// set userid, pwd, accountDN and PersonDN on wnua.
wsNewUserAccessLst.add(wnua);
List<WSRequest> listReq = accessService.createAccess(wsSession,

wsAccessEnt, wsNewUserAccessLst, null);

4.5.2 Example: Get Accesses

WSSession session = loginIntoITIM(principle, credential);
WSAccessService accessService = getAccessService();
List<WSAccessEntitlement> listWSAccessEntitlement =
accessService.searchAvailableAccessEntitlements(wsSession, null,

personDN, null, accessName);
wsAccessEnt = listWSAccessEntitlement.get(0);
List<WSUserAccess> wsUserAccessList = accessService.getAccesses(

wsSession, personDN, wsAccessEnt == null? null: wsAccessEnt.getAccessId());

4.5.3 Example: Remove a user Access

WSSession session = loginIntoITIM(principle, credential);
WSAccessService accessService = getAccessService();
List<WSPerson> lstWSPersons = personService.searchPersonsFromRoot(

wsSession, personSearchFilter, null);
String personDN = lstWSPersons.get(0).getItimDN();

List<WSUserAccess> wsualist = accessService.getAccesses(wsSession,
personDN, null);

WSRequest wsreq = accessService.removeAccess (wsSession,
wsualist.get(0), null);

4.5.4 Example: search for available access entitlements

WSSession session = loginIntoITIM(principle, credential);
WSAccessService accessService = getAccessService();
List<WSOrganizationalContainer> lstWSOrgContainers =
wsOrgContainerService.searchContainerByName(wsSession, null,

"Organization", container);
wsContainer = lstWSOrgContainers.get(0);
List<WSPerson> lstWSPersons = personService.searchPersonsFromRoot(

wsSession, personSearchFilter, null);
String personDN = lstWSPersons.get(0).getItimDN();

List<WSAccessEntitlement> wsAccessEntitlementList =
accessService.searchAvailableAccessEntitlements(wsSession, container,

personDN, accessType, accessInfo);

4.6 UnAuth related task

4.6.1 Example: Get challenge questions

WSUnauthService wsUnauthService = getUnauthService();
List<String> challengeQuestions = wsUnauthService.

getChallengeQuestions(principle, wsLocale);
for (String question : challengeQuestions)

System.out.println (question);

4.6.2 Example: Lost password login reset password

List<String> answersList = new ArrayList<String>();
answersList.add(answer);
WSUnauthService wsUnauthService = getUnauthService();
List<String> challenges = wsUnauthService.

getChallengeQuestions(principle, wsLocale);
if (challenges.size() != answersList.size())

return false;
List<WSChallengeResponseInfo> criList = new ArrayList<WSChallengeResponseInfo>();
for (int i = 0; i < challenges.size(); i++) {

WSChallengeResponseInfo cri = new WSChallengeResponseInfo();
cri.setQuestion(challenges.get(i));
cri.setAnswer(answersList.get(i));
criList.add(cri);

}
String requestId = wsUnauthService.lostPasswordLoginResetPassword(

principle, criList, wsLocale);

4.6.3 Example: Self register

WSPerson wsPerson = createWSPersonFromAttributes(inputParamsMapWithPersonAttribs);
WSUnauthService wsUnauthService = getUnauthService();
// tenantId is an optional parameter if not specified then the value specified
// in the enRole.properties for property "enrole.defaulttenant.id" is used.
wsUnauthService.selfRegister (wsPerson, tenantId);

4.6.4 Example: Get self password change rules

WSUnauthService wsUnauthService = getUnauthService();
WSPasswordRulesInfo wsRuleInfo = wsUnauthService

.getSelfPasswordChangeRules(accountDN);

1.5 Extension Service related task

4.6.5 Example: Extend with XML

WSSession session = loginIntoITIM(principle, credential);

WSPersonServiceService service = new WSPersonServiceService();
WSPersonService port = service.getWSPersonService();
// Assume that a person with full name as John Smith exists and ensure that

// and that this person is owner of one or more services in the IBM Security
// Identity Manager.
String filter = "(cn=John Smith)";
List<WSPerson> searchResults = port.searchPersonsFromRoot(

session, filter, null);
if (searchResults == null) {

Utils.printMsg(WSExtensionServiceClient.class.getName(),
"execute", this.name(),
"A person 'John Smith' must exist.");

return false;
}

WSPerson wsPerson = searchResults.get(0);
// Convert the object to XML string
String xmlParam = "";
xmlParam = XMLBeanWriter.writeXMLBean(wsPerson);
WSExtensionService extensionService = getExtensionService();
// Execute the sample logic to get the service group names of
// the services which 'John Smith' owns
String resultStr = extensionService.extendWithXML(session,

"sample.extension.SampleWSExtension",
"GetServiceGroups", xmlParam);

List<String> result = (List<String>) XMLBeanReader.readXMLBean(
resultStr, List.class);

5 SharedAccess related examples

The following example demonstrates how to use the client proxy interface to call the
shared access Web Services APIs.

// Get the client side proxy to call the shared access Web Services APIs.
URL serviceURL = new URL(
"http:/localhost:9080/itim/services/WSSharedAccessService/WEB-INF/wsdl/WSSharedAccessService.wsdl");
WSSessionService_Service service =
new WSSessionService_Service(url,
new QName(""http://services.ws.itim.ibm.com", WSSharedAccessService));
WSSharedAccessService proxy = servcie.getWSSharedAccess();

// Authenticate and get the session
WSSession session = proxy.login("userID", "password");

// Get authorized shared accesses
List<WSSharedAccess> authorizedSharedAccess =
proxy.proxy.getAuthorizedSharedAccess(session, serviceURI);

// Get the credential
WSCredential wsCredential = proxy.getCredential(session, credCompDistinguished Name, justification,
duration);

// Check in the credential
String requestID = proxy.checkIn(session, leaseDN);

// Log out
proxy.logout(session);

6 Single Sign-On (SSO) implementation

The IBM Security Identity Manager (ISIM) Web services provides a fallback
mechanism when authenticating the user. The IBM Security Identity Manager
WSSessionHandler first verifies the Simple Object Access Protocol (SOAP) message to
confirm whether the session details passed in the message can assign it a valid
subject. If it does not, then WSSessionHandler first looks into the SOAP header for
the WS-Security header. If WSSessionHandler is not able to locate the identity token
and hence a valid subject, WSSessionHandler then looks for the Lightweight Third
Party Authentication (LTPA) token in the HTTP cookie LtpaToken2.

The IBM Security Identity Manager Web services support Single Sign-On for its web
services. The programming approach relies on the Java Authentication and
Authorization Service (JAAS) module to authenticate the token and provide with the
appropriate subject with the corresponding principals. The user authenticates using
WSLoginModule and WSCallbackHandler. The code snippet for retrieving the Subject
from the identity token (LTPA) is the same for WS-Security header scenarios, which
is described as follows:

Following are the supported SSO use cases or scenarios:

6.1 WS-Security headers
The <Security> header block in a SOAP message provides a mechanism to attach
security-related information that is targeted at a specific receiver or the SOAP actor.
The LTPA token is an identity token. You can use the standard Web services security
header to send this token. The BinarySecurityToken element contains the LTPA token,
which the IBM Security Identity Manager Web services consume for authenticating
the user. The LTPA token is sent as part of every request that the client makes for
invoking the Web services API. The handling of the LTPA token at the client side is out
of the scope of this document. See the examples about how you can embed the LTPA
token in the BinarySecurityToken element.

The IBM Security Identity Manager Web services provide their own actors. The client
sends the <wsse:Security> header with the IBM Security Identity Manager actor to
enable the IBM Security Identity Manager to process the header and retrieve the
LTPA token.

The IBM Security Identity Manager Actor Identifier URL is:
http://services.ws.itim.ibm.com/60/actor

The actor has versioning support.

The BinarySecurityToken element also supports encoded token in the SOAP header.
This version of IBM Security Identity Manager Web services provides for Base64
encoding.

Following is the sample SOAP message with the LTPA token for the Web services API
call WSPersonService.getPrincipalPerson:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Header xmlns:wsse="http://docs.oasis-

open.org/wss/2004/01/oasis-200401-wss-wssecuritysecext-1.0.xsd">
<wsse:Security

actor="http://services.ws.itim.ibm.com/60/actor">
<wsse:BinarySecurityToken ValueType="wsst:LTPA">

 gn0DxEOu/Nn4b9gGr5rVKwpazJis9CRauQ0zfwf0wSRlgQkw
vFON13tnWinWF==

</wsse:BinarySecurityToken>
</wsse:Security>

</S:Header>
<S:Body>

<getPrincipalPerson>
<session>

<clientSession xsi:nil="true"></clientSession>

<enforceChallengeResponse>false</enforceChallengeResponse>
<locale xsi:nil="true"></locale>
<sessionID>0</sessionID>

</session>
</getPrincipalPerson>

</S:Body>
<S:Envelope>

http://services.ws.itim.ibm.com/60/actor
http://services.ws.itim.ibm.com/60/actor
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuritysecext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecuritysecext-1.0.xsd
http://schemas.xmlsoap.org/soap/envelope/

6.2 IBM® Security® Access Manager (ISAM) WebSEAL HTTP
headers

IBM Security Access Manager (ISAM) is a complete authorization and network security
policy management solution. ISAM WebSEAL is the resource manager responsible for
managing and protecting Web-based information and resources. WebSEAL acts as a
reverse Web proxy by receiving HTTP or HTTPS requests from a Web browser.
WebSEAL delivers content from its own Web server or from junctioned Web
application servers. The IBM Security Access Manager authorization service evaluates
requests by passing through WebSEAL to determine whether the user is authorized to
access the requested resource. WebSEAL provides SSO capabilities.

There are two scenarios for using ISAM webSeal.

➔ Iv-user and TAI:

The Trust Authentication Interface (TAI) approach looks for the iv-user
HTTP header in the request which is forwarded by ISAM webSeal. The
steps for configuring ISAM and TAI are detailed in the infocenter
section “Configuring IBM Security Identity Manager for single sign-on
with WebSphere Trust Association Interceptor and Tivoli Access
Manager WebSEAL”.

➔ LTPA token:

ISAM WebSEAL sends the identity token (that is the LTPA token) in the
HTTP headers. ISAM WebSEAL cannot embed the tokens into the SOAP
message, which is the HTTP payload.

You can configure the cookie name which has the identity token in the enRole.properties
file. The data folder of the IBM Security Identity Manager installation directory contains
this file. The property name is enrole.webseal.ltpa.cookie.name. The default value is
LtpaToken2 since the IBM WebSphere Application Server till version 7.x provides this
cookie name when WebSEAL sends the request to the protected server. Once you extract
the token, submit the token to the JAAS module to authenticate and retrieve the Subject.
The code snippet at the start helps to understand the LTPA token authentication.

NOTE: You can configure ISAM WebSEAL to send the LTPA tokens in the cookies. You
can refer to the configuration details in the ISAM WebSEAL administration guide.

6.3 IBM Security Identity Manager Web Services API
best practices

The web services API are asynchronous in nature which is similar to the
behavior of the Java API. This enables ISIM to handle multiple requests
for different operations from multiple users. The requests are lined up
in a queue and there is no guaranteed order in which the requests will
be executed. ISIM does not support transaction management on the
requests. The underlining data sources namely LDAP and RDBMS
support transaction management.

For example: A create person request is submitted by a user. At the
same time a new request for changing the attribute is triggered. There
is no guarantee which request will be picked up first by ISIM. If the
latter one is picked it would fail as there is no user existing.

In scenarios where there are dependency operations to be performed
the Request object should be used to ensure that the previous
operation is successfully completed and then proceed with the next
one. This ensures that there is no race condition which may lead to
failures. The WSRequestService can be used to determine the status of
the process/operation.

6.3.1 Don’t use ‘GregorianCalendar.setTime(new Date())’ for
scheduling arguments .

Several WebServices functions accept javax.xml.datatype.XMLGregorianCalendar
parameter used to schedule the action for some time in the future. If the desire is to have
the operation start immediately, use null.
Example:

GregorianCalendar calendar = new GregorianCalendar();

calendar.setTime(new Date());

XMLGregorianCalendar date =
DatatypeFactory.newInstance().newXMLGregorianCalendar(calendar);

Impact:

Passing in a GregorianCalendar.setTime(new Date()) value has two downsides. The first
is that if the API call is done on a remote system, the current system’s date may not

match up with the server’s date due to being out of sync or timezone differences resulting
in undesired behavior. The second, and more important, downside is that specifying a
date instead of null results in a message for future activity being added to the
SCHEDULED_MESSAGE table creating unnecessary work for ISIM and possibly
resulting in lock contention for busy systems.

6.3.2 LDAP Attribute filter

Several WebService functions accept a LDAP filter to search the entities in the LDAP
repository. Ensure that a valid and optimal LDAP filter is passed to these functions.

Impact:

Filters used with WSPersonService, WSAccountService should be optimal to minimize
the amount of data returned decreasing the time required to return the results.

6.3.3 Specify return attributes

When searching for an entity, explicitly specifying the desired attributes will improve
performance.

Impact:

By specifying a list of desired attributes, the directory server can minimize the amount of
data returned decreasing the time required to return the results. Specifying an attribute list
can also reduce the memory overhead of the resulting data set.

	1 Introduction
	2 Architecture
	2.1 Architecture overview
	2.2 Architecture components

	3 Web Services functionality
	3.1 WSSessionService
	3.2 WSAccountService
	3.3 WSGroupService
	3.4 WSOrganizationalContainerService
	3.5 WSPasswordService
	3.6 WSPersonService
	3.7 WSProvisioningPolicyService
	3.8 WSRoleService
	3.9 WSServiceService
	3.10 WSSystemUserService
	3.11 WSSearchDataService
	3.12 WSRequestService
	3.13 WSToDoService
	3.14 WSAccessService
	3.15 WSUnauthService
	3.16 WSExtensionService
	3.17 WSSharedAccessService

	4 Example code to use the IBM Security Identity Manager Web Services
	4.1.1 Example: Authenticate to IBM Security Identity Manager and get a session handle
	4.1.2 Example: Login via challenge response questions for a user (lost password behavior)
	4.1.3 Example: Get principal person (get the person object of the logged in person)
	4.1.4 Example: Create person
	4.1.5 Example: Modify person (including roles)
	4.1.6 Example: Suspend person example
	4.1.7 Example: Search person example
	4.1.8 Example: Search persons with an IBM Security Identity Manager account
	4.1.9 Example: Get authorized services for a person (services on which a person is authorized to have a new account)
	4.1.10 Example: Get principal person's roles
	4.1.11 Example: Check if person is member of role
	4.1.12 Example: Add role
	4.1.13 Example: Remove role
	4.1.14 Example: Synchronize passwords and synchronize generated password
	4.1.15 Example: Add roles to person
	4.1.16 Example: Remove person from roles
	4.1.17 Example: Transfer person
	4.1.18 Example: Create account
	4.1.19 Example: Deprovision account
	4.1.20 Example: Get account attributes
	4.1.21 Example: Get account profile for service
	4.1.22 Example: Get default account attributes (helpful before provisioning a new account)
	4.1.23 Example: Modify account
	4.1.24 Example: Restore account
	4.1.25 Example: Suspend account
	4.2 Role object related tasks
	4.2.1 Example: Lookup a role by its DN
	4.2.2 Example: Lookup a system role (ISIM Group)
	4.2.3 Example: Search roles by filter
	4.2.4 Example: Create static role
	4.2.5 Example: Get member roles
	4.2.6 Example: Update role hierarchy

	4.3 Organizational Container object related tasks
	4.3.1 Example: Get Organization sub-tree
	4.3.2 Example: Search container by attribute
	4.3.3 Example: Create container
	4.3.4 Example: Remove container
	4.3.5 Example: Lookup container
	4.3.6 Example: Get Services
	4.3.7 Example: Get Account for service
	4.3.8 Example: Service search
	4.3.9 Example: Get service for an account
	4.3.10 Example: Create service
	4.3.11 Example: Modify service

	4.4 To Do task related
	4.4.1 Example: Get Assignments
	4.4.2 Example: Get RFI
	4.4.3 Example: Get Entity detail
	4.4.4 Example: Submit RFI
	4.4.5 Example: Approve or Reject

	4.5 Access Service related task
	4.5.1 Example: Create an Access
	4.5.2 Example: Get Accesses
	4.5.3 Example: Remove a user Access
	4.5.4 Example: search for available access entitlements

	4.6 UnAuth related task
	4.6.1 Example: Get challenge questions
	4.6.2 Example: Lost password login reset password
	4.6.3 Example: Self register
	4.6.4 Example: Get self password change rules
	4.6.5 Example: Extend with XML

	5 SharedAccess related examples
	6 Single Sign-On (SSO) implementation
	6.1 WS-Security headers
	6.2 IBM® Security® Access Manager (ISAM) WebSEAL HTTP headers
	6.3 IBM Security Identity Manager Web Services API best practices
	6.3.1 Don’t use ‘GregorianCalendar.setTime(new Date())’ for scheduling arguments .
	6.3.2 LDAP Attribute filter
	6.3.3 Specify return attributes

